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Periodically arranged co-flowing jets 
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The problem of a periodic planar arrangement of a large number of co-flowing, 
interacting jets is investigated. It is shown that this interaction gives rise to strong near- 
field oscillations of large-scale spatial coherence and to far-field inhomogeneities. In 
the experiments performed, the jets were produced behind a flat plate perforated by 
holes arranged in a square or triangular periodic pattern and placed perpendicular to 
a uniform flow. At moderate Reynolds numbers, the interaction results in a remarkable 
low-frequency oscillation of the merging distance of the jets downstream of the plate. 
A detailed description of the recirculating flow in the cavities between the jets 
emphasizes the role of the backflow in the cavities on the oscillatory behaviour. This 
description is supported by measurements of the local fluctuating velocity and 
pressure, two-point correlation measurements and quantitative flow visualizations. 
These experimental observations suggest a new formulation for the instability 
dynamics of such unstable recirculating flows. This formulation, based on the 
nonlinear delayed saturation of the jet’s shear layer instability (NLDS model) predicts 
successfully the dependence of the oscillation of the merging distance on the jet 
Reynolds number and on the local geometrical features of the confinement of the jets. 
Furthermore, it is shown that the diffusion of mass coming from one jet, seeded with 
an inert dye, gives rise to an exponential diffusion front over a distance corresponding 
to a few mesh sizes indicating a strong local coupling of the jets. At the scale of the 
whole jet assembly, the oscillations are organized as large-scale travelling waves, 
propagating from the boundaries of the domain to its centre. This symmetry-breaking 
property is discussed and supplemented by a spatio-temporal simulation of an array of 
coupled oscillators. 

1. Introduction 
Jets are classical turbulent shear flows and numerous studies have been devoted to 

different aspects of them, motivated either by their widespread engineering applications 
or by their fundamental interest as a prototype shear flow. Jets are characterized by 
two modes of instability and consequently by complex structures and are particularly 
well suited for the study of large-scale and microscale turbulent mixing. A confinement, 
either by solid walls or by surrounding jets as is considered here can give rise to new 
flow phenomena. This configuration is of interest in the context of multi-jet burners or 
liquid propellant rocket engines in that the collective interaction of hindering jets may 
be coupled with the downstream combustion. 

An easy way to produce multiple co-flowing jets is the passage of an air stream 
through a plate perforated by holes arranged according to a predetermined pattern. 
This pattern may, for instance, be a two-dimensional periodic network. By varying the 
hole diameter d with respect to the mesh size M of the network, it is possible to produce 
multiple jets, when the solid fraction S is high, or interacting wakes. Conceptually, it 
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is then possible to pass continuously from nearly isolated jets when M / d  + 1 to grid 
turbulence when M / d  z 1. 

Grid turbulence behind low-solidity square-mesh grids has been widely studied (see 
for instance Comte-Bellot & Corrsin 1966; Groth & Johansson 1988), emphasizing, 
however, only the far-field (x > 10M) homogeneous turbulence. Few results have been 
reported on high-solidity grid flow which is known to give rise to inhomogeneities of 
the downstream flow due to jet interaction when the open-area ratio is less than a certain 
value, about 0.6. Corrsin (1944) reports on experiments made with an array of parallel 
slots and finds that the flow results from successive coalescence of individual jets. The 
location of the final large-scale jet is determined by minor inhomogeneities of the grid 
and/or the upstream flow. Baines & Peterson (1951) show how a uniform upstream 
velocity profile is distorted in the far field after passage through a grid made of a 
triangular network of jets with solidity ratio S = 0.75. The resulting flow pattern is 
evolving very slowly in time and the inhomogeneities occur over a scale large compared 
with the spacing between the jets. 

Since the description of the immediate near field of the flow, that is before and up 
to the jet merging position, was not addressed in these pioneering works, the temporal 
dynamics of the jet assembly has been ignored. An understanding of this temporal 
dynamics is of importance in explaining the origin of the flow inhomogeneities 
downstream of high-solidity grids, or interacting multiple jets like in combustion 
chambers. Villermaux et al. (1991) reported for the first time the existence of a strong 
self-sustained oscillation of the merging distance of the jets issuing from a square and 
triangular network of holes. This robust oscillation, which occurs for intermediate jet 
Reynolds numbers, is locally coherent at the scale of the mesh and develops large-scale 
propagative instabilities along the network. The flow in the immediate vicinity of the 
plate was shown to consist of a periodic collection of oscillating jets interacting via 
adjacent cavities, anchored between the jets, with the spatial periodicity of the network. 

This cellular-type oscillating flow pattern is reminiscent of a series of two- 
dimensional flow configurations which exhibit a very rich variety of large-scale 
instabilities and auto-organization processes, such as the Rayleigh-BCnard instability 
above threshold (see Berg6 & Dubois 1988; Manneville 1991 for a review), the Faraday 
instability (Douady 1990) or the dynamics of anchored MHD-driven vortices 
(Tabeling, Cardoso & Perrin 1990; Sommeria 1986). These studies, which were 
intended to investigate the different routes to turbulence via spatio-temporal 
intermittency and pattern formation, are now rather well documented experimentally 
and rely on the systematic theoretical background of complex amplitude equations (see 
Fauve 1991 for an extensive didactic presentation and van Saarloos & Hohenberg 
1992). Although our theoretical approach is somewhat different from the one adopted 
in these studies, a collection of jets can be considered as a new example of a dynamical 
system of coupled oscillators. 

The paper is organized as follows. After a description of the experimental details and 
conditions in 92, we present in $ 3  the results concerning the oscillatory behaviour of 
the jets and the large-scale properties of the assembly. Then, in 94, a model for these 
self-sustained oscillations which considers the jets as coupled oscillators is derived from 
the features of the local flow around the jets. The model predictions concerning the 
frequency, the spatial coherence of the phase of the oscillations and the mass diffusion 
along the network are compared with the experimental observations and illustrated by 
one-dimensional analytical and numerical models. 

Finally, the practical implications of our findings are discussed and the qualitative 
properties of less ordered or networks with defects are commented on. 
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2. Experimental installation and techniques 
The interacting multiple jets were produced by perforated plates, placed in a uniform 

air stream. Most of the experiments were carried out in a 80 x 80 cm2 test-section wind 
tunnel with a contraction ratio of 16. This wind tunnel, originally designed for the 
study of the laminar boundary-layer transition has a very low level of residual 
turbulence. The plates were made of 5 mm thick epoxy. The perforation patterns 
investigated in this tunnel were square networks of round holes with diameters d equal 
to 3, 5 and 10 mm and of mesh sizes M equal to 7.6, 12.7, and 25.4 mm respectively, 
thus giving a constant mesh size to diameter ratio of 2.54 and an expansion ratio for 
each jet of 4M’/7td2 = 8.2. Preliminary experiments were performed in a smaller test- 
section wind tunnel 15 x 60 cm2 in cross-section with contraction ratio 4 and residual 
turbulence of 0.06%. In this tunnel, the grid was made of a 2 mm thick epoxy plate. 
For this set of experiments, two perforation patterns were used which are shown on 
figure 1 : a square network of holes d = 1 mm in diameter, with A4 = 2.54 mm (this grid 
is homothetic to the set of grids used in the larger wind tunnel whose solidity ratio 
is 0.87), and a triangular network of holes d = 0.8 mm in diameter and mesh 
M = 2.73 mm, giving a solidity S = 0.92. 

In all cases, the perforated plates covered the whole section of the wind tunnel and 
were in contact with the wall to prevent any vibrations on perturbations near the 
boundaries. The fluctuating velocity measurements were made using one or two 
independent DISA hot-wire probes which could be accurately positioned in the test 
section. The measurements of mean velocities were made with a Pitot tube, and for the 
absolute and fluctuating pressure measurements, a HMB-KWS 3073 differential 
pressure sensor was used. The frequency response of this pressure transducer depends 
on the length and diameter of the pressure tube. The tube, placed perpendicular to the 
flow direction, is 4 mm in diameter and 10 cm long, giving a frequency response of the 
system of about 450 Hz. The signals were either analysed on-line by a Schlumberger 
correlator and spectral analyser, or digitized and post-processed on a MASSCOMP 
5500 computer. 

The lateral walls of the larger wind tunnel are transparent, thus allowing the 
visualization of the jets. A dense wet, white smoke produced by a high-flow-rate smoke 
generator was injected through a thin elongated tube located at roughly ten mesh sizes 
upstream of the plate. The injection velocity of the smoke was set equal to the air 
velocity in order to minimize the perturbation of the upstream flow. With this facility, 
it was possible to seed with smoke either an array of jets or a single jet. Then, a plane 
laser sheet (approximately 1 mm thick) produced by an oscillating mirror (oscillating 
at about 200 Hz), placed 4 m downstream in the test section, allowed the seeded array 
to be visualized. The flow, made visual in this way, was recorded using a 25 frames per 
second CCD video camera positioned at a right angle to the direction of the flow and 
the laser light plane. The pictures were further analysed on an image processing 
system. 

3. Qualitative observations 
3.1. Mean Pow structure of the near field 

In the region immediately behind the grid, the flow reflects the perforation pattern 
exactly. From each hole an axisymmetric jet issues, which expands with distance from 
the grid to merge with its neighbours when its diameter has reached a dimension equal 
to the network mesh size M. We call this merging length x = L ;  it is in the mean 
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FIGURE 1 .  Hole patterns: M is the mesh size and d the diameter of the holes. (a) Front view, square 
network. We used a set of grids for which M l d  = 2.54, with four different diameters: d = 1, 3, 5 and 
10 mm. (b) Front view, triangular network: M = 2.73 mm, d = 0.8 mm. 

J t -  M 2 * b 

u 5 
FIGURE 2. Definition sketch of the instantaneous spatial arrangement of an array of jets in a newtork. 
L is the distance at which the jets merge downstream of the grid, 6L is the amplitude of oscillation. 
The distance between points A and B refers to the correlation length of the pressure along the 
network. u, is the typical velocity of the fluid packets shed by a jet at  the merging distance, in a 
direction Y = (y2  + z2$ contained in the plane ( y ,  z )  parallel to the plate. 

homogeneous in the grid plane ( y , z )  and depends only, for a given geometry of the 
network, on the jet Reynolds number Re = ud/v, where u is the velocity (top-hat 
profiled) at the exit of the jets. Between the jets, before they merge, exists a recirculation 
flow similar to the recirculating bubble of confined jets or reattaching separated flows 
behind backward-facing steps for instance. The jet arrangement is shown schematically 
in figure 2. 

When a hot-wire probe located at x << L is moved parallel to the grid, it crosses low- 
and high-velocity regions alternately, with the periodicity of the hole pattern. At the 
merging position, the fluctuating part of the velocity abruptly increases. Just 
downstream of the merging position, the time-averaged velocity, which is decreased 
with respect to the velocity at the centreline of the jets, is nearly uniform and L refers 
to the position where this uniformity in mean velocity is first observed. So defined, the 
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uncertainty in the determination of L is within 10 O h  and is consistent with the scaling 
uL/v  = 2 x lo4 with u(L) M f u  (figure 4). 

The spreading angle of a laminar jet is known to decrease with increasing Reynolds 
number, so that, when the jet issues into a confined region of given dimensions, the 
cavity length is proportional to Re. Above a certain critical Reynolds number, Re,, 
instabilities develop progressively, and the mean spreading angle increases with Re to 
reach the asymptotic value (x ZOO) of turbulent jets. This trend has been observed for 
a confined jet by Back & Roschke (1972) in the Reynolds-number range 20 to 5 x lo3. 
In Becker & Massaro (1968), this asymptotic regime is reached at Re about 3 x lo3 with 
a single free round jet. The thickness 6 of the mixing layer at the nozzle exit in their 
experiments is S/d = 0.9Re-k and what they call the ‘wave breaking length’ L’ is found 
to be L‘/d = 107Re-3. This length L‘ is in some sense related to our merging length L 
since it corresponds to the distance from the nozzle exit to the point where the unstable 
waves suddenly roll up, thus increasing the jet diameter significantly. The above- 
quoted laws amount to assuming that the characteristic length f l  present in the 
expression giving the thickness 6 - (vfl/u)i, and which is in fact the length of the 
boundary-layer development in the nozzle, is equal to the diameter of the nozzle d. 
Thus, the wavelength h selected by the Kelvin-Helmholtz instability of the shear layer 
of thickness 6 and which is such that S/h is of order unity (Chandrasekhar 1961) is then 
given by h / d  - Re-;, a law which, considering the aspect ratio of the nozzle they used, 
is actually observed by Becker & Massaro. 

If the characteristic lengthscale 5 is the wavelength h of the preferred unstable mode 
itself, as is the case if the velocity profile is flat enough at the nozzle exit as in the present 
experiments, these laws are modified in the following way. In that case, the shear layer 
starts developing just at the exit of the nozzle, by vorticity diffusion into the 
surrounding still environment. The instability can thus begin only at a distance x down- 
stream of the nozzle larger than or equal to the wavelength h predicted by 
6/h - 1. This condition is satisfied at  the critical distance x, such that h = x, - (vx,/u)y, 
giving in this case h - v/u.  Therefore, the critical wavenumber of the instability is such 
that k,  - u / v ,  and the initial spatial growth rate is proportional to k,x. This relation 
demonstrates the role of viscosity in the formation of the initial shear layer and in the 
associated most amplified mode selection and growth rate, explaining the ‘earliness’ of 
the onset of the shear instability as a function of Re. The foregoing reasoning remains 
valid as long as the Reynolds number based on the vorticity thickness of the velocity 
profile is less than about 100 (Corcos 1979). The effective diameter of the jet at a 
location x downstream of the nozzle exit is then proportional to ux/v and is equal to 
the mesh size M at a distance L from the nozzle exit such that 

L / M  - Re-’. (1) 
This dependence is well supported by our experiments as is seen in figure 3 where the 
cavity length L, non-dimensionalized by M ,  is plotted as a function of Re. Also 
included in this figure is the amplitude of variation of L, denoted by 6L, as a function 
of Re, which will be discussed in g3.2. Note that if the total entrainment flow rate q in 
the cavity is assumed to be proportional to L and to u in a first approximation, q is 
constant in the intermediate Reynolds-number range where (1) holds and proportional 
to u at larger Re. The results of Back & Roschke, replotted in log-log coordinates, 
exhibit a similar law for reattachment lengths of a jet confined by rigid walls in the 
transition zone between viscous and turbulent regimes. 

We mentioned the existence of a recirculation region, anchored between the jets. The 
motion inside this region maintains a permanent backflow from the merging position 
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FIGURE 3. Mean merging distance L / M  (0,  d = 1 mm; 0, d = 5 mm) and amplitude of oscillation 
SLIM (A, d = 5 mm) as a function of the jet Reynolds number Re; square network, M / d  = 2.54. 

towards the jet nozzles. As this backflow will be shown to play a crucial role in the 
oscillating property of the merging length that we will further describe, it is at this stage 
worthwhile to discuss its origin and its mean features. 

The cavity is, for intermediate Reynolds numbers, laminar, and its aspect ratio M I L  
is smaller than unity (see figures 3 and 5).  The main features of the steady flow may thus 
be well described in the framework of a lubrication approximation. For simplicity, let 
us consider a two-dimensional cavity inserted between two jets located at y = -+$M. 
Let G = (aP/ax)/p be the pressure gradient responsible for maintaining the 
recirculation motion, and let V ( y )  be the velocity of the fluid in the x-direction parallel 
to the jet axis. Assuming a quasi-parallel incompressible flow (a2 V/ax2 - u/Lz ; 
azV/i3yz - u / ( + M ) ~  and (M/2L)2 < 1 see figure 3) ,  the lubrication approximation is 

l a  a 2  
-- P = v- V(y).  
P ax aY2 

The boundary conditions for the velocity are such that V( -+ $ M )  = u, with u being the 
velocity of the jets. The velocity profile is then 

G 
2v 

V(y )  = u--[(;M)2-y2], (3) 

which is the well-known parabolic shape characteristic of Poiseuille flows. 
Up to this point, the pressure gradient G is still unknown but, since we want to 

describe the steady flow, we have to include in our analysis the fact that the cavity is 
'closed' on the average to any mass transport (q  < recirculation mass flow in the 
cavity). This implies that the net mass flux, integrated over the total width of the cavity 
M must be zero, that is 

+:M 

V(y)dy = 0. (4) s -$M 

The closure equation (4) determines the pressure gradient as 

G = 12vu/M2. ( 5 )  
This pressure gradient is, in usual laboratory conditions, very weak. For instance, at 
a Reynolds number of lo3, with d = 3 mm and M = 7.6 mm, one finds G = 15 Pa m-'. 
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FIGURE 4. (a)  Decay of the mean velocity u(x) on the centreline of a jet in a square network 
( M / d  = 2.54, d = 3 mm) a sa function of the rescaled downstream distance ux/v  where u is the nozzle 
velocity of the jet. The merging distance L is defined such that uL/v M 2 x lo*, with u(L)/u M 112. 0, 
Re = 1350; 0, Re = 1600; +,Re  = 1841; .,Re = 1959; 0, Re = 2116; A, Re = 2277. (b) Pressure 
increase (Pzp - P,)/puz in a cavity as a function of the rescaled downstream distance ux /v .  P,, is 
the pressure in the far field downstream of the merging distance and is a constant approximately equal 
to the ambient pressure. 

G is many orders of magnitude less than the gradient G constructed from the total 
pressure increase between the plate and the merging length, divided by L. The total 
pressure increase AP is similar to the one obtained through a sudden expansion and is 
given by 

(6) 
PU2 s 2  
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FIGURE 5.  Smoke visualizations showing one period of oscillation of a je t  ( T  = 1 s) and the interaction 
with its neighbours. Only one jet imbedded in a square network is seeded with an inert white smoke. 
The jet is visualized by a laser sheet in the (.qj,)-plane; d = 5 mm, M / d  = 2.54, Re = 943. 

where S, = +xd2 and S,  = M'.  The pressure difference AP depends only on the incident 
kinetic pressure and on the geometry. Thus, writing G' = AP/pL, and using (1) it is 
found that the ratio G'/G is of the order 

G' 
G d  
- N M Re2 (7) 

Seen at the scale of G', the pressure is nearly constant in the cavity and its gradient 
hardly detectable (figure 4h) .  Nevertheless, it is sufficient to maintain the motion in the 
cavity. 

As is shown in figure 4(b),  the evolution of the pressure along the cavity follows the 
evolution of the velocity measured at  the axis of a jet (figure 4a) .  Practically all the 
available pressure increase occurs a t  uL/v  = 2 x lo', that is to say at the merging 
distance L,  where, by the definition of L,  the velocity decreases abruptly. Both the 
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FIGURE. 6. Visualization of an array of jets imbedded in a square network seeded with smoke. The 
instantaneous merging distance varies along the network. Square network, d = 5 nim, M / d  = 2.54, 
Re = 130. 

pressure and the velocity are practically constant for .Y < L ;  only a weak, but 
measurable positive pressure gradient exists which drives the backflow in the cavities. 
This observation justifies the lubrication approximation, since it is a proof that, at 
these Reynolds numbers, the cavity is indeed laminar over the major part of its total 
length and that the instabilities of the jets are only weakly developed along the cavity 
up to x = L, where the jets finally explode drastically. Flow visualizations demonstrate 
clearly the sudden destabilization (figure 5) .  

3.2. Oscillations 
Beyond a threshold Reynolds number particular to each hole configuration, and up to 
a Reynolds number of the order of 3 x 10" to 4 x lo3, the jets exhibit a remarkable 
oscillatory property, which still influences the flow far downstream (Villermaux ef ul. 
1991 who, however, used a slightly different definition for L). Figure 5 shows a period 
of oscillation of a jet embedded in the network, seeded with smoke (Re  = 943). One 
clearly sees how the merging distance oscillates in time. The existence of a recirculating 
flow in the adjacent cavities is also demonstrated as well as the spatial extent of the 
coupling between the jets. At the merging distance with its first neighbours, the jet 
'explodes' and throws turbulent fluid packets around itself, up to its fourth or fifth 
neighbour. These packets are then convected upstream by the backflow in the cavities. 
When a complete array of jets is seeded, the resulting spatial coherence is even more 
clearly seen (figure 6). 

The phenomenon is also obvious from velocity records obtained with a probe 
located a t  the edge of a jet, close to the merging region. One sees from figure 7 that 
the signals display spikes (strong decreases of velocity) that are fairly periodic. These 
relate the residence times of the probe in the turbulent region downstream of the 
merging, where the mean velocity is much less than in the core of the jet (about 
ten times smaller depending on the value of the solidity ratio). At the same time, a 
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FIGURE 7. Velocity signal recorded by a probe positioned at x = L in the centreline of a jet (square 
network, d = 1 mm, Re = 1923). (b) Simultaneous signals recorded by two probes positioned on 
opposite sides of a jet showing that the motion of the merging distance is axisymmetric (square grid, 
d = 1 mm, Re = 1923). ( c )  Spectrum of the velocity fluctuations recorded with a probe positioned at 
the edge of a jet. The low-frequency peak corresponds to the oscillation of the merging distance of 
the jet, and the high-frequency peak relates to the shedding of the Kelvin-Helinholtz roll-up vortices 
associated with a Strouhal number fd/u % 0.4. (Square network, d = 5 mm, Re = 850). 

record at the immediate exit of the hole nozzle inside the jet core reveals a perfect 
constancy of the velocity indicating that these fluctuations do not affect the incoming 
flow upstream of the plate (contrary to the observations of Yu, Trouve & Daily (1991) 
made in a model ramjet combustor). The fact that the nozzle velocity is not influenced 
by the downstream oscillations means that the same jet oscillation behaviour would be 
observed if the jets were to come from individual, non-interconnecting nozzles. If the 
sensitive part of the probe is exactly positioned on the jet edge (at x / L  M 3/4) the signal 
also displays the shedding of the Kelvin-Helmholtz roll-up vortices, passing at the 
usual Strouhal frequency. The resulting spectrum (figure 7 c), displays both the low- 
frequency oscillation of the merging distance and the characteristic Strouhal frequency 
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of the preferred shear mode. These two oscillating modes are decoupled and differ in 
frequency by about two orders of magnitude. 

To check the symmetry of the motion of the jet, it is also possible to use two probes, 
positioned at opposite sides of a jet (figure 7b) .  The two simultaneous signals are 
very well correlated, confirming that the oscillation is an axisynimetric motion of 
the merging length, and not a global flapping of the jet, in accordance with the 
visualizations (see figure 5 for instance). 

The amplitude SL of the motion was measured by positioning a probe at the 
centreline of a jet, and moving it in the x-direction. The position at which the 
oscillating motion is first recorded is defined to be L-SL, since L refers to the position 
beyond which the uniformity in mean velocity parallel to the grid is reached. 
This estimation, which compares well with the visualizations, defines SL within the 
precision of L (roughly 10%). At a fixed Reynolds number, the value of SL is, as L, 
fairly homogeneous over the entire network. It is shown on figure 3 that SLIM obeys 
an evolution parallel to L / M  as a function of Re. For large Reynolds numbers, the 
amplitude becomes of the order of the mesh size and becomes indistinguishable from 
the velocity fluctuations in the jet which is, for R e  M 3 x lo3 and above, already 
turbulent at the exit of the nozzle. The oscillations thus vanish at high Re and the 
network consists of 'rigid' stable and non-oscillating jets. The frequency versus jet 
Reynolds number of all the grid patterns investigated is shown in figure 8(a).  When 
rescaled by the mesh size A4 and velocity u, the frequencies give a Strouhal number 
f M / u  = 0.007 (figure 8b). This non-dimensional form will be commented on later. 

The velocity fluctuations of the recirculating fluid inside a cavity, due to the 
oscillation of the merging length, and the related pressure fluctuations can be 
accounted for by hydrodynamic description of the cavity. We already know its steady- 
state solution at low Reynolds number, given by equations ( 3 )  and ( 5 )  derived in the 
previous section. It is worthwhile investigating the complete temporal problem since it 
will shed light on the experimental simultaneous recordings of the fluctuating pressure 
and velocity which exhibit a non-trivial phase shift (figure 9). 

We rewrite the equation of motion (2), including now the time dependences. Our 
goal is to relate the fluctuations of velocity in the cavity to an imposed fluctuating 
pressure gradient SG = superimposed on the mean gradient G :  

where v = v ( y ,  t )  is the velocity, depending on the space coordinate y and on time t .  We 
have assumed, as previously, a quasi-parallel and incompressible flow. We seek a 
solution for u(y,  t )  in the form u ( y ,  t )  = V(y)  + Sv(y, t )  with 

(9) 
where V ( y )  is the steady-state solution given by (3); A ,  B, C and k are, respectively, 
constants and a wavenumber to be determined. The boundary conditions for Sc(y, t )  
are Sv( k + M ,  t )  = 0. Although lengthy, the computations leading to the solution for 
6v(y,  t )  are straightforward (see for instance Landau & Lifchitz 1989): 

Sv(y, t )  = [ A  eiky + Be-ikg + C ]  e-i'ot, 

with k = (1 +i)/< and 6 = (2v /w) i .  (1 1) 
The lengthscale < is the penetration depth of vorticity in the cavity (skin thickness). 
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High pulsations w lead to a small penetration depth <, that is to an oscillating plug flow, 
while low frequencies lead to raccorded boundary layers from y = -k;M to the centre 
of the cavity, and to a developed viscous oscillating velocity profile. 

Let (Sv)  be the average of Sv(y) over the width of the cavity: 

In accordance with what is stated above, M / [  4 2 leads to a viscous fluctuating flow 
which oscillates in phase with the driving pressure a e-i"t : 

whereas M / [  + 1 reveals a phase-shift of fn between velocity and pressure. In this 
regime, Sv(y) is practically constant in the y-direction over the width of the cavity 
except in the thin adjacent boundary layers where it varies rapidly. This limit amounts 
to considering a negligible viscosity for which the problem is amenable to a balance 
between purely inertial and pressure forces implying, by the derivation with respect to 
time, the quadrature of phase : 

The phase shift between velocity and pressure is shown for arbitrary values of M / [  in 
figure 10. In our experiments, M / [  has a typical value of 15, and thus one expects Sv(t) 
andp(t) to be nearly in quadrature of phase. This is precisely what is observed on figure 
9(c), showing the intercorrelation of &(t) and p( t )  measured in the centre of a cavity 
and which are actually phase shifted, with a phase-lag very close to in. 

This simple experiment is helpful in the understanding of the hydrodymamic regime 
controlling the cavity flow in that it exhibits the dynamical role of the pressure, 
responsible for the periodic injection of downstream turbulent packets in the 
recirculating flow (figure 5). We pursue this interpretation in the next section. 

3.3. Large-scale coherence 
The spatial organization of the oscillations has been investigated by using two probes, 
keeping one fixed at the edge of a jet, and moving the other one along the y-axis at the 
same x-location (the precise location is, in fact, of little importance since the velocity 
fluctuations are coherent inside the cavity; in other words, the wavelength associated 
with the oscillation is much larger than the cavity length). The probes are separated by 
a variable distance 1. The intercorrelation between the two (mean subtracted) signals 
Sv(y, t )  and Sv(y + I ,  t )  is calculated according to 

Z(l, 8) = lim 1 riT Su(y, t )  Su(y + E ,  t - 0) dt. 
T+a -:T 

Correlation functions for increasing separation I between the probes are presented in 
figure 1 1. As expected for a periodic signal, each correlation function is oscillating with 
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FIGURE 9. (a) Simultaneous recordings of the velocity (top) and pressure (bottom) fluctuations at the 
same location in the centre of a cavity at x = $L. (b) Corresponding power spectrum of the pressure 
fluctuations. (c) Intercorrelation of the velocity and the pressure computed from equation (15) 
showing a time shift between zero and the time of maximum of correlation very close to a quarter- 
period (phase lag of kn). Square network, d = 3 mm, Re = 1841. 
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FIGURE 10. Phase shift between velocity and pressure fluctuations in a cavity predicted by equation 
(12) as a function of M / { .  In the range of Re covered by our experiments, a typical value for M/C 
is 15. 
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FIGURE 11. Intercorrelation functions for increasing probe separation 1. (a) l / M  = 0, (b) l / M  = 6 ,  
(c) l / M  = 12, (d)  1/M = 20. Square network, d = 1 mm. Re = 2574. 
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FIGURE 12. Maximum correlation as a function of distance 1 expressed in terms of number of jets 
(n = l / M )  in the y-direction. The spatial correlations decay exponentially. Square network, d = 3 mm, 
Re = 1289. 

time separation 8. The damping of the autocorrelation function with respect to 0 
indicates that the oscillation is fairly noisy. This damping is stronger at the first half- 
oscillation, which is due to the presence of small-scale turbulence in the regions of 
lower velocity when the probe is downstream of the merging length. The maximum of 
the intercorrelation is also damped with increasing separation 1. The evolution of the 
maximum of the correlation as a function of 1 (or of the number of neighbour from the 
reference jet) is well representated by an exponential decrease (figure 12) indicating that 
the coherence of the oscillations remains localized within a circular region 10 to 15 
mesh sizes wide. This correlation length is homogeneous over the network and does not 
depend significantly on the direction J) or z nor on the Reynolds number of the jets. 

A main feature of these intercorrelations is that they are not symmetric, or parity 
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FIGURE 13. Simultaneous evolutions of the amplitude of 15 neighbouring jets, superimposed one over 
the other in arbitrary units (cut of the network in the y-direction), over one and a half periods. The 
arrow indicates the direction of wave propagation, which is directed towards the centre of the 
network. 

invariant. Standing waves would produce symmetric intercorrelation curves. The 
maximum of intercorrelation is time shifted, and the shift increases with probe 
separation 1. This feature is the signature of a propagation mechanism in the plane of 
the grid. As we were investigating the existence of propagation of the waves in the y- 
and z-directions, we found that it was systematically detected when the mean position 
of the two probes was not precisely at the centre of the network. The direction of the 
wave propagation was also systematically found to be directed from the boundaries 
of the network to the centre. 

The visualizations reflect this property as well. Since the period of oscillation is large 
compared with the sampling period of the camera, it is possible to follow the 
space-time evolution of the amplitude of an array of jets seeded with smoke. One 
clearly sees on figure 13, showing 15 adjacent jets labelled from 1 to 15 beginning at 
the upper boundary of the network in the y-direction, the spatial phase shift of a wave 
one-and-a-half periods long, oriented towards the centre of the network. 

A physical description that aims to be compatible with all of the above-reported 
observations has to be able to explain the origin of the oscillatory behaviour, as well 
as the spontaneous symmetry breaking of the phase along the network. We present 
now a possible model which has as essential ingredient the existence of a recirculating 
flow in the cavity adjacent to each jet. The extension of this model to other unstable 
recirculating flows will also be outlined. 

4. The nonlinear delayed saturation (NLDS) model 
4.1. Origin of the oscillations: delayed saturation 

The fact that fluids flowing near obstacles or through confining devices may develop 
and maintain self-sustained oscillations of velocity and internal pressure has been 
known for a long time. Rockwell & Naudascher (1979) review the basic configurations 
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of shear layer and impingement edge geometries that produce self-sustained 
oscillations. The mechanism of the oscillations is usually claimed to be related to the 
coupling between the vortex impingement or separation and the corresponding 
associated pressure field. A generic example of these situations is a convective flow, like 
a jet for instance, liable to develop shear instabilities and which impinges at a given 
distance from the nozzle on an edge or on a plate (the 'edge tone', Powell 1961; 
Crighton 1992). A pressure wave originating in the impingement of a vortical structure 
on the obstacle travels upstream and may thus trigger the shedding of a new vortical 
disturbance at the nozzle, provided that the convective timescale of the vortices 
and the pressure feedback travel time satisfy a certain resonance criterion (Ho & 
Nosseir 198 1). In the terminology of Chomaz, Huerre & Redekopp (1 988) (see also 
Huerre & Monkewitz 1990), the flow is still convectively unstable, but dominated by 
a pressure loop in contrast to flows that are intrinsically absolutely unstable, that is to 
say flows in which vorticity disturbances grow locally faster than they are convected 
downstream. These unstable flows may present, in a certain region of space, a 
hydrodynamic resonance which has been, for example, observed for jets issuing into an 
environment of different density (Monkewitz et al. 1990). 

Among the different configurations quoted by Rockwell & Naudascher, flows 
developing spatially in the vicinity of and interacting with rigid cavities are also 
mentioned as giving rise to oscillating separation and reattachment. This is particularly 
the case for the flow over a backward-facing step which is known, when the Reynolds 
number based on the step height is not too small, to present an unsteady quasi-periodic 
reattachment process at the floor downstream of the step (Eaton & Johnston 1980, 
1982; Berman 1965). Since this pattern is directly related to the case of multiple jets, 
for which the recirculation is the dominant feature of the cavities, we will focus on the 
understanding of the dynamics of this class of flows, where the feedback loop is realized 
physically by a recirculation of mass, whose hydrodynamical state is, as for 
neighbouring jets above a critical Reynolds number, more or less turbulent. 

The starting point of our interpretation is the model of Landau for weakly nonlinear 
instabilities (Landau 1944; Landau & Lifchitz 1989) which we briefly summarize here. 
To prevent the unphysical exponential growth of an instability amplitude A(t) at long 
times, an expansion in A( t )  of the variation dA(t)/dt up to the first non-zero nonlinear 
term is considered in the form 

(16) 
d - A ( t )  = rA(t)-pU(A(t)('A(t). 
dt 

This very well known model, originally conjectured by Landau in 1944, has found a 
broad application in hydrodynamics and beyond (Stewartson & Stuart 1971 ; Fauve 
1991) and predicts a saturation of the amplitude at large times 

(17) 

We take into account this property for the case of recirculating flows and for confined 
jets in particular by noting that 

A(t + co) = ( r / p ) i .  

(i) a free jet does not display remarkable low-frequency oscillations; 
(ii) the oscillations come from the confinement, realized either by solid walls or by 

neighbouring jets; 
(iii) the role of the confinement is to establish a recirculating zone adjacent to the jet 

in the near field which convects large-amplitude perturbations upstream ; 
and we proceed, heuristically, as follows. 
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FIGURE 14. Sketch of the recirculation and jet destabilization mechanism. A turbulent packet of fluid, 
shed at  the merging distance of the jets is convected upstream in the cavity. The action of this packet 
on the initiation of shear instability of the jets is delayed by a time 7, necessary for the packet to escape 
the merging zone and to travel towards the beginning of the shear instability at the edge of the jets. 

We call the recirculation time of the fluid in the cavity 7. This is also the transit time 
of a ‘turbulent blob ’ shed by the jet at the merging zone and convected upstream, via 
the recirculation, into the region of the jet where the shear instability is initiated. 

In order to model the dynamics of the confined jet, we propose to make the nonlinear 
saturation effective with a time lag, a delay equal to the time that is necessary for a 
turbulent packet to be convected upstream from the merging zone towards the 
beginning of the jet. We thus propose to write the equation describing the time 
evolution of the relative amplitude ( A ( [ )  - constant -SL(t)/L) of the merging or 
reattachment length in the form 

0 

ix 

-A( t )  d = r A ( t ) - p (  1 IA(t-t’)l2Xt‘)dt‘ 
dt 

In this convolution expression,flt) is a function that modulates the retarded action of 
the nonlinear term JA(t- t’)12 on the development of the linear instability, whose kernel 
is represented by the structure a ,A( t )  - rA(t) .  The form of the function may be guessed 
on physical grounds. Its maximum must be located at t = 7 since this instant represents 
the mean position of an active saturation packet convected upstream in the cavity. This 
packet has necessarily a certain volume and thus, due to its finite size, may be active 
during a certain time cr spread around the mean time 7. The general form off(t) can 
thus be represented by a Gaussian function, which naturally expresses spreading of 
variance cr and locality around a mean 7: 

We see that, within the purely temporal formalism of (18) and (19), the spatial nature 
of the developing flow is included in the formulation of the instability dynamics via the 
spatial meaning of 7 and IT (figure 14). 

In the following, we will only consider the case of an infinitely localized retarded 
action, representing the nonlinear delayed saturation (NLDS hereafter) of an eddy, 
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whose scale is small compared with the dimensions of the cavity ((T -+ 7). In this 
particular case, , f i t )  is the Dirac delta function located at t = 7 and the dynamical 
equation of the NLDS model is written 

d 
- A ( t )  = rA( t )  - ,u I A ( t  - .)I ' A ( t )  . 
dt 

The existence of a continuous and bounded range of retarded times as in (19) does not 
alter the temporal features of (20) (Villermaux & Hopfinger 1994). The NLDS model 
given by (20) can be considered as the generic formalism of the physical mechanism 
presented above, involving a coupling between linear instability and nonlinear delayed 
saturation. 

The parameter r represents the usual instability growth rate, ,u stands for the 
sensitivity to the nonlinearity and 7 is the recirculation time in the cavity. The 
integration of (20) can be performed numerically, and it is shown on figure 15 for 
different values of r and 7 that the amplitude A ( t )  never reaches a stationary limit when 
r7 > (this will be derived later), but oscillates monoperiodically around the value 
( r / , u ) ~  which cancels the time derivative. Moreover, A ( t )  always remains positive if A(0) 
is positive. 

One can show that a cycle of oscillation can be decomposed into two exponential 
branches on suitably chosen intervals of the period. This decomposition mimics the 
exact solution of A(t) by a set of alternating relaxations, one with a positive argument 
and the other with a negative argument (a kind of relaxation oscillation, see Villermaux 
& Hopfinger 1994) and gives 

rT= Y T ( ~ + K +  I/K), (21 .) 

with 

The parameter /3 represents, in the expression of the argument of each exponential 
branch, the maximum and the minimum value of the amplitude with respect to (r/,u)f 
and, by construction, must be close to i. The period T is a function of r and 7 only 
whereas p sets the amplitude of the oscillation. The different physical parameters 
involved in these expressions can be evaluated in the case of a confined jet as follows. 
Beyond a critical Reynolds number, the initial growth rate r of the shear layers of a jet 
is of the order of u / d ;  this is the growth rate of the shear layer as soon as its width has 
reached the size of the diameter d, and can also be written r - (v /d2)[Re-Re,] .  For a 
laminar elongated cavity, the lubrication approximation (equation (3)) suggests that 
the maximum recirculation velocity, obtained at the centre of the cavity ( y  = 0) is 
about fu. The recirculation time 7 is of the order of M/u,  which is the time for a 
turbulent packet to escape the merging zone and to be convected upstream in the cavity 
by a distance of the order of its own size. It then appears that the product r7 is 
independent of the Reynolds number and, accordingly, the frequency of oscillation J 
is expected to vary linearly with the jet Reynolds number: 

The appropriate scaling relation is thus expected to be f M / u  = g ( M / d )  or, 
alternatively, fMd/v - Re.  The function g(M/d) is a function of the geometry of the 
network only and goes to zero, as expected, when M / d +  a. It is found from (22) that 
g(2.54) = 0.0079. This value, considering the approximate estimations made for Y and 



82 E. Villermaux and E. J .  Hopjinger 

2.0 

1.5 

1 .o 

0.5 

5 10 15 20 
(b) 

5 10 15 

I '  " '  " "  . ' 

2.0 

1.5 

1.0 

0.5 

0 
5 10 15 

20 

FIGURE 15. Numerical integration of the NLDS model (equation (20)). (a)  r = 4, 7 = 0 .3 ,  ,u = 3; (b)  
r = 4, T = 0.35, ,u = 3 ;  (c) r = 1 ,  T = 1.3,  ,u = 1. The amplitude A(t)  - constant-&L(t)/L remains 
always positive and displays periodic spikes (see figures 7 a  and 9a for comparison). 

7 (which are included in the model in their dimensional form and by their orders of 
magnitude only), compares surprisingly well with the measured one which is close to 
0.007 (figure 8b). This heuristic model thus displays a good collapse of the jet's 
oscillations frequencies when rescaled in the proper non-dimensional group and even 
provides a good estimation for the prefactor g(M/d) .  It seems that the spatial coupling 
of the oscillators does not alter substantially the value of the frequency given on purely 
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geometrical grounds. The amplitude of oscillation is large at low Reynolds numbers, 
near the onset of the oscillations, and decreases like L with increasing Re (5 3 and figure 
3). For large Reynolds numbers, the jet is already turbulent near the nozzle, and is no 
longer excitable by the backflow. In this limit, the self-sustained oscillation vanishes in 
the turbulent fluctuations of the jet. This effect is taken into account in this model 
recalling that (lSLl)/L - ( A )  - (r/,u)i, with r - Re. 

4.2. Spatial coherence of pressure and difusion of mass 
We now turn to the question of the spatial coupling between the oscillators. In the 
plane located at a distance x = L downstream and parallel to the plate, the pressure is 
oscillating in time, at each point of the plane, at the frequency obtained in 54.1. At a 
given instant, a point A of that plane (figure 2) located, say, downstream of the merging 
position (whose position is L-SL at that time) has a pressure PA while its neighbour 
B located at a distance f from A before the merging distance (whose position is L + SL 
at that time in point B), has a pressure P, such that 

PA - PB = AP. (23) 
This pressure difference (figure 4b) is equal to the total pressure increase given by 
equation (6). Indeed, as shown on figure 4(b), this pressure increase occurs over a short 
interval Ax. The pressure gradient aP/ar in the plane parallel to the plate evaluated 
with respect to the spatial coordinate r = (y2+z2) i  is thus of the order of A P / &  where 
f is the correlation distance for the pressure in that plane. 

The equation of motion for an element of fluid shed by a jet in the vicinity of the 
plane and accelerated with a radial velocity u, in the pressure field is 

The jet 'explodes' at the merging distance quasi-isotropically and thus u, scales as u ;  
moreover, the acceleration time of the fluid particle is of the order of T which is the 
correlation time of the pressure pattern in the plane. With these velocity, time and 
length scales, u, T and f ,  the equation of motion is written 

u AP 
- 

T - Z '  

With T = M/(0.007u) given by the experiments and equation (22), and with 
M / d  = 2.54, giving S,/S,-(S,/S,) = 0.106, one finds, according to this crude 
description, that the correlation length is [ / M  = z 15. The extent of the pressure 
correlation is the binding mechanism responsible for the synchronization of the local 
exciting eddies in each cavity and our measurements indeed show that the oscillators 
are coupled up to the 10th or 15th neighbour, a correlation distance that is independent 
of Re (figure 12). 

A remarkable consequence of this large-scale synchronization is the redistribution of 
fluid issuing from one jet in the plane parallel to the network. Figure 16(a) is an average 
of images taken over several periods of oscillation of a jet, imbedded in a square 
network (d  = 5 mm, M / d  = 2.54), seeded with white smoke. A cut of the averaged 
concentration field on a line parallel to the injection plate at one mesh downstream 
reveals an exponential decay of the concentration of tracer in the adjacent cavities, 
extending roughly to the fifth neighbour. The concentration in the first adjacent cavity 
to the seeded jet is about 60 % of the injection concentration and the concentration in 
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FIGUKF. 16. ( ( I )  Mean concentration field around a jet seeded with a white inert smoke. The average 
has been taken over about 30 periods of oscillation. (h )  The concentration profile obtained from (a) 
by a cut parallel to the grid at one mesh size downstream from the grid displays an exponential decay 
on a charactcristic scale ( , / M  5 3. Square network. d = 5 mm. Rc = 11 50. 
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the fifth cavity is still 10% of the injection value (figure 16h).  I t  is important to note 
that the long-range mass diffusion still occurs at large Re where the amplitude of 
oscillation has vanished. A simple one-dimensional (but this restriction does not limit 
the generality of the results) model explains why the diffusion front is non-Gaussian 
and remains localized in space at infinite times; this is an example of 'anomalous' 
diffusion (see e.g. Cardoso & Tabeling 1989; Pomeau. Pumir & Young 1989 and 
Bouchaud & Georges 1990). Let C,, be the concentration of the tracer in cavity I? of 
volume V and width M .  We picture the exchanges of mass through the cavity in the 
following way. The cavity is crossed by an entrainment flow rate q, directed 
downstream from the core of the cavity to the merging length via the turbulent 
entrainment by the jets, and the local radial redistribution of mass in the plane parallel 
to the network at .Y z L (which mainly contributes to the exchange between the cells 
since the streamlines in the cavities are essentially directed in the .v-direction) is 
accounted for by assuming that the cavity exchanges a flow rate Q with its closest 
neighbouring cavities labelled M - 1 and I? + I .  The mass balance of the tracer around 
the cavity IZ is then 

(26) 

This is a discrete diffusion equation with a loss term (i.e. - qc,) which accounts for the 
emptying of the cavity by the turbulent entrainment of the adjacent jets. The emptying 
time 7,) = V / q  is nevertheless much larger than the transit time T,  and this allowed us 
to use the 'impermeability' property of the cavity on a period of oscillation in the 
previous section. 

To find the large-scale structure of the concentration profile with respect to the mesh 
size, we pass to the continuous limit of equation (26), y being again a coordinate 
parallel to the network : 

with T,  = V/q ,  D = M'/Rr, ,  and R = q / Q .  (27 b) 
If, as in the experiment described in figure 16, a point in the y-space (J = 0 for instance) 
is saturated for all times with a tracer of concentration C,, this model predicts that the 
concentration front C(y ,  t )  becomes, a t  large times, stationary and localized on a 
characteristic lengthscale 5, such that 

with 

The lengthscale 5, is related with, but not strictly equal to, 6 the correlation distance 
for pressure. In spite of the fact that, in the construction of the model, only the 
exchanges between first neighbours have been taken into account, the typical width of 
the concentration profile 5, may be larger than the mesh size M and this, as expected, 
is more pronounced when the exchange flux Q is large compared with the emptying flux 
q (that is to say R < 1). The refinement of this model to include the exchange for 
N ad'acent neighbours does not raise any difficulty and leads to 5: = a M ' / R ,  with 

= &'J2. Since both q and Q are proportional to each other due to the mass 
conservation of carrying fluid, their ratio R = q / Q  and therefore the width of the 
diffusion front is expected to be independent of Re for a given geometry. We find, for 
two-dimensional square networks, ( , /M z 3 (figure 16h). 
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4.3. Spatio-tcn?poral djwaniics 
The central result of the previous section is that the correlations in the cross-plane are, 
although localized, long-ranged compared with the mesh size. This point is crucial as 
far as the spatial arrangement of the phase of the oscillation is concerned. The tracer 
dispersion experiment discussed above reveals moreover that the redistribution of mass 
is very strong a t  short distance. Since the fluctuation of the jets is closely linked to the 
fluctuation of pressure ( $ 3  and figure 9), it is natural to relate the evolution of the 
amplitude of an oscillator to the amplitude of its closest neighbours by a ‘diffusive’ 
coupling. Indeed, this kind of coupling reflects the strong local correlations. The 
evolution of the amplitude A ,~ of the oscillator n may thus be written, in one dimension 
(again, the generalization to the two-dimensional problem is trivial and does not 
modify the results discussed in the following) in the form 

The parameter c stands for the intensity of the diffusive coupling between the oscillator 
n and its neighbours n - 1 and n + 1 whereas the temporal forcing of the oscillator n 
keeps the form of the NLDS model. 

The linear instability analysis of the dynamical equation can be performed around 
the fixed point A, = ( r / p ) $  by writing, for example, the amplitude A,(t) as the product 
of the fundamental temporal solution of equation (20) A(r) modulated by a factor of 
order unity which incorporates a small real perturbation function of space and time 
that we write 

(30 0)  

(30b) 

+ C.C. (30c)  
This decomposition is equivalent to the more classical one: A( t )  = A,y(l +&(n, t ) )  with 
A,7 = ( r /p ) i .  Substitution in (29) gives, to leading order in F ,  the dynamical equation for 
the perturbation : 

A,(t) = A(t>.f(n, 0, 
An,  f> = 1 + 4 n ,  0, 
F(n,  t )  = e.st-ik’.W7~ 

Taking into account the fact that s is apriori complex and decomposing s = s’ +is”, one 
finds the dispersion relation and the condition of marginal stability : 

s” = 2r sin ( ~ ” 7 )  e-S”, 

s’ = - 2r cos ( ~ ” 7 )  ePs” - 2c( 1 - cos ( k k f ) ) .  
(32 4 
(32 b) 

In the spatial continuous limit (kM+O),  we rewrite this set of equations with the 
following dimensionless variables: X = s’7, Y = s”7, U = r7 and K = k(cM27):: 

The threshold of instability occurs for K = 0 as soon as U > an, that is precisely at the 
onset of the oscillatory regime of a single oscillator. The array of coupled oscillators 
is thus always unstable a t  large wavelengths. Figure 17 displays the numerical 
computation of X and Y for arbitrary values of U and K. Figures 17 (a)  and 17 (6) show 
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FIGURE 17. ( N )  Linear instability of the model of cquatio;i (29). Dimensionless growth rate X = .s’7 

as a function of dimensionless wavenumber K = k(cM27)7 and delay U = r7. (h )  Contour plot of (a) 
for particular values of X .  The system is unstable for k = 0 as soon as U > fn. (c) Same as (a)  but for 
the pulsation Y = S ” T .  
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FIGURE 18. Numerical simulation of the model equation (29) with 128 oscillators. Vertical axis = 
space; horizontal axis = time. In all cases, r = 4, r = 0.35, p - = 3 and c = 2. The dark regions 
correspond to amplitudes below the threshold shown on the trace of the central oscillator (labelled 
64). (u) Periodic boundary conditions (oscillator 1 is coupled wi,th oscillator 128). ( h )  Boundary 
oscillators forced to zero. (c) Boundary oscillators forced to ( r / p ) z ,  

that the amplification rate X of an unstable mode of wavenumber K is a decreasing 
function of K. One thus expects the existence of an unstable travelling wave at  a scale 
of the order of the total width of the network. A numerical simulation of this model 
for an array of 128 oscillators reproduces all of these observations, namely 
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( i )  the existence of a quasi-periodic regime for each oscillator given to a first 
approximation by (20) : 

(ii) the continuous emergence of large-scale propagative waves along the network 
and a strong local coherence; 

(iii) the role of the boundary conditions on the directivity of the waves. If  the 
boundary oscillators are forced to zero, a condition which is probably appropriate and 
representative of finite-size network, the waves are directed from the periphery of the 
network to the centre. 

The third observation is consistent with the existence of the time-shifted 
intercorrelations discussed in 5 3  (see also figure 11  and 13). We see from figure 18 that 
the lines of constant phase in this space-time representation are organized in a 
chevron-like pattern directed towards the centre of the array and presenting weak 
secondary instabilities. The group velocity of the waves 2 3 ,  = c's"/?k, derived from the 
linear instability for a given selected wavenumber k and its corresponding pulsation ~Y'' 

and amplification rate s' is given by 

8r7cM'k sin (~''7) ecp ' 
1 + ( 2 ~ 7  e-' r ) r  - 4r7 cos (~"7) ec' '' 

1' = (34) 

This pattern is reminiscent of the organization of the cellular structures observed in 
two-dimensional forced convection (Daviaud, Burnol & Ronsin 199 1) and, although 
reversed, of the shape of the vortex tubes shed in the wake of a cylinder a t  low 
Reynolds numbers (Williamson 1989 ; Albarede, Provansal & Boyer 1990; Albarede & 
Monkewitz 1992). The chevron pattern is even more pronounced when the boundary 
oscillators are forced to ( r / p ) ?  (figure 18c), a value that, like the zero value, cancels the 
time derivative of the fundamental temporal mode, but contributes more strongly, by 
diffusive coupling, to the amplification rate of the next neighbours. 

5. Conclusions and further remarks 
This paper is concerned with the oscillatory instability observed in planar periodic 

arrangements of jets. The dominant observation is the large-amplitude self-sustained 
quasi-periodic oscillation of the merging distance of each jet with its near neighbours. 
The existence domain of this low-frequency instability lies within a jet Reynolds- 
number range extending from a few hundred, where the onset of the oscillations is 
observed, to 3 4  x lo3 where the amplitude of oscillation vanishes completely. In this 
Reynolds-number range, the mean merging distance is a decreasing function of Re and 
goes down to a lower limit fixed by the network mesh size. The oscillation amplitude 
follows a parallel evolution and, for large Re, becomes indistinguishable from the 
turbulent velocity fluctuations of the jet. 

At the scale of the mesh size, various measurements such as pressure-velocity cross- 
correlations and passive tracer diffusion have demonstrated the role of the backflow in 
the oscillations and suggested a scenario for the instability dynamics. It is observed 
that, as a consequence of the existence of a weak adverse mean pressure gradient due 
to the expansion of the jets, some packets of turbulent fluid shed by the jets at the 
merging distance are periodically convected upstream in the cavity. We further 
remarked that these 'packets ' represent hydrodynamical perturbations localized in 
space and liable to interfere with the upstream development of jet shear instability. N o  
attempt has been made to study in detail the role of the packets in the initiation of the 
shear instability of the jet because it is of little importance in the present context. The 
crucial point is that the interaction of the packets and the jet instability is delayed with 
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M r i i  
M I u 

Seeded Sealed 
jet holes 

FiCiURt 19. Smoke diffusion in a network with defects. In the vertical plane, two holes located two 
mesh sizes above the seeded jet have been sealed. The consequence of this i s  the formation of a large 
recirculation zone downstream of the sealed holes which deflects the nearby jets. Square network 
d = 5 mm, M / d  = 2.54, Re = 1885. 

respect to the instant of the packet shedding and that, since i t  involves a perturbed state 
far above the critical Reynolds number, it may probably be a nonlinear process. These 
two ingredients were implemented in a new formalism, called the NLDS model 
(nonlinear delayed saturation) in the form of an amplitude equation which incorporates 
a retarded nonlinear term (equation (20) and $4.3). This dynamical equation naturally 
displays a self-sustained oscillation, the features of which (frequency, amplitude) 
depend only on the geometry of the confinement of the jets and on Re, in close 
agreement with the experiments. At the scale of the network, the oscillations, 
synchronized by the fluctuating pressure gradient, are strongly correlated over a short 
distance and display the broken-symmetry collective behaviour of large-wavelength 
travelling waves, directed from the boundaries of the network to its centre (993.3 
and 4.3). 

To close, we would like to suggest two possible future directions for this work. 
The first one concerns the spatial arrangement of the jets. In the present study, we 

considered periodic networks only. square or triangular. It would be interesting, from 
a practical point of view especially, to consider less ordered networks, including, for 
instance, defects or modulations of the mesh size. In that case, we expect that the 
'holes' in the network, in the sense of the gaps in the network of jet orifices, will 
dominate the spatial pattern of the near field behind the plate (figure 19). These regions 
will probably give rise to the formation of large recirculation cavities, possibly 
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interacting with other neighbouring cavities of the same size, regardless of the presence 
of smaller-scale cavities in between. 

The second one is of a more formal inspiration. One may wonder about the potential 
generality of the NLDS model. We again draw attention to the fact that this model is 
a phenomenological formulation and that, therefore, its application may go beyond the 
problem studied. The flow of a jet confined by solid walls and the flow over a 
backward-facing step are obvious extensions. In spite of the fact that this model is 
intended to represent unstable flows with a conwctire recirculation loop, there is no 
need, strictly speaking at the phenomenological level of the amplitude equation 
formalism, for this feedbak to be realized by a turbulent convective flow. One could 
consider if some retro-actions of other physical origin propagating with a finite celerity 
such as vortical waves (Chomaz ct nl. 1988) or finite-rate chemistry effects in confined 
combustors (Mitchell, Crocco & Sirignano 1969; Keller 1982) might be accounted for 
by a formulation of this kind. 
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